Task 2: Introduction to Web Application Security

Nicholas Massei
Cybersecurity Intern
Redynox

July 12, 2025



Introduction

During my second task, I focused on identifying and exploiting web application vulnerabilities — as
mentioned in the objectives, focusing on SQL Injection and Cross-Site Scripting (XSS) using tools
like bWAPP, WebGoat, and ZAP. My goal was to understand these vulnerabilities in practice and

learn mitigation techniques.

Setup WebGoat Environment

To begin, I installed Docker to run WebGoat on my host machine — and later just installed WebGoat
on my Kali Linux VM. WebGoat is an intentionally vulnerable web application including its own
lessons for practicing techniques, and I accessed it via browser at http://localhost:8080/WebGoat.
The platform offers guided modules that simulate real attack scenarios, which made it super easy to
engage with and test techniques like SQL Injection, Cross-Site Scripting (XSS), and Cross-Site
Request Forgery (CSRF) — all are techniques I have become familiar with beforehand.

Logging in and exploring these modules on WebGoat provided a controlled space to break things,
learn from mistakes, and better understand how attackers think. So far, I am just thinking about how

incredible this tool is for learning and sandboxing.

Gaining Background Information

I then used an incredibly helpful YouTube tutorial titled “Automated Hacking Tool?! | OWASP ZAP
Tutorial” to deepen my understanding of ZAP and how to properly interpret the results it was giving
me. This resource helped me move beyond just passively running scans -- it taught me how to read
alerts, understand their risk levels, and even explore follow-up manual testing based on what was
discovered. With this video, I was able to take more intentional steps in using ZAP as an actual

penetration testing tool, not just an automated scanner.



The tutorial specifically connected to vulnerabilities like Cross-Site Scripting (XSS), SQL Injection,
and Cross-Site Request Forgery (CSRF) by demonstrating how ZAP detects these issues and what
manual techniques can be used to exploit and confirm them. This made it much easier to grasp the
practical implications of the vulnerabilities I encountered in WebGoat and understand how attackers
might leverage them. It also showed me that ZAP definitely pulls false negatives (which should be
expected) so it is good to verify every vulnerability ZAP finds.

Reference: https://youtu.be/QJ5Su_dHwoAk?si=1si6gh2HH V62IAZ

Basic Vulnerability Analysis
Now to start getting interactive. I have everything set up and am ready to manually explore
WebGoat’s lessons and the site itself, actively investigating and exploiting vulnerabilities while using
ZAP as my primary tool for identifying security weaknesses. While going through the lessons for
SQL injection, XSS, and CSRF on WebGoat I had ZAP manually configured to log, spider, and
further vulnerability scan using, and it obviously logged more than one example of each of these
vulnerabilities — there were many more to explore but I will focus on these for this task. The alerts
listed gave me solid proof of each vulnerability.

¢ SQL Injection and SQL Injection - Hypersonic SQL — SQL Injection

e Vulnerable JS Library — XSS

e Absence of Anti-CSRF Tokens — CSRF

Evidence screenshotted and included on the last page(s).


https://youtu.be/QJ5u_dHwoAk?si=1si6gh2HH_V62lAZ

Exploring Vulnerabilities
After reviewing ZAP’s alert descriptions and with the lessons I went through on WebGoat, I
deepened my understanding of how each vulnerability functions — not just in theory, but even in the

context of a real (insecure) application.
* For SQL Injection (Windows — WebGoat), I used inputs in the lessons such as the first one where

[ used “SELECT department FROM employees WHERE first name = 'Bob"’ to retrieve data without
authentication. ZAP’s alert for "SQL Injection — Hypersonic SQL" confirmed the potential impact of
insecure query handling and helped reinforce how backend logic can be manipulated with crafted
input.

» For XSS (Windows — WebGoat), I explored where simple JavaScript payloads like

<script>alert('XSS")</script> could be submitted — particularly in comment or input fields. While
WebGoat provides safe examples, ZAP identified the usage of an outdated version of Underscore.js,
linked to a known CVE (CVE-2021-23358, as listed in the description), which supports the potential

for script injection attacks.
 For CSRF (Windows — WebGoat), ZAP detected the absence of anti-CSRF tokens in many

requests. Without these tokens, an attacker could forge state-changing requests from a victim’s
browser. This aligns closely with what I learned when going through WebGoat’s CSRF lessons.
Each of these findings was confirmed through both ZAP’s logging, automated scanning, and manual

interaction with the WebGoat interface.

Using Kali Linux VM with ZAP in bWAPP to explore SQL Injection and XSS further
Attempting to manually exploit a site (with consent - bW APP) using techniques I have learned.

bWAPP (buggy web application) is an intentionally vulnerable app -- like WebGoat, but different.



o SQL Injection: For SQL Injection (Search/GET — bWAPP on Kali), I used payloads like '
OR 1=1 # to bypass search filters and retrieve the entire dataset from the backend without
proper validation. The success of this injection demonstrated how vulnerable queries can be
exploited to expose all records. This further reinforced the importance of sanitizing input and
using parameterized queries to defend against unauthorized data access.

o Cross-Site Scripting XSS: For XSS testing on bWAPP, I used payload ><script>alert('You
got hacked!")</script> and injected it. This successfully triggered an alert, demonstrating that
the application failed to properly sanitize user input before rendering it on the page. This
vulnerability highlights the risk of attackers injecting malicious scripts that can steal user data
or perform unauthorized actions. It further emphasizes the need for input validation to
prevent such attacks.

Evidence screenshotted and included on the last page(s) as always.

Challenges Faced
Most tasks were clear and manageable, though I faced some formatting issues with documentation
and had to familiarize myself with new security tools and set ups. I addressed these by researching

best practices and searching for help when needed.

Report
SQL Injection: Bypassed input validation to access unauthorized data.
Cross-Site Scripting (XSS): Executed malicious scripts via un-sanitized user input.

Cross-Site Request Forgery (CSRF): Missing anti-CSRF tokens would allow unauthorized actions.



Possible Simple Mitigations

Input Sanitization & Parameterized Queries: Prevent SQL injection by using prepared statements
and validating user inputs rigorously.

Output Encoding & Content Security Policy (CSP): Mitigate XSS by encoding output, sanitizing
input, and implementing CSP headers to restrict script execution.

Implement Anti-CSRF Tokens: Include unique tokens in state-changing requests to verify

legitimate user actions and block forged requests.

Reference:

OWASP Foundation. OWASP Cheat Sheet Series. https://cheatsheetseries.owasp.org/index.html

Conclusion

This internship has been a great learning experience that took my cybersecurity skills from theory to
hands-on application. Working through real vulnerabilities like SQL injection, cross-site scripting, and
CSRF while using tools such as WebGoat, ZAP, and Wireshark allowed me to better understand both
offensive and defensive techniques. From network traffic monitoring to vulnerability scanning and safe
configuration practices, every task showed the importance of layered security and its implementation.
Closing Remarks

I’'m grateful to the Redynox team for creating supportive, challenge-driven tasks. The structure and
resources provided helped me grow technically and professionally. For what it is, | couldn’t think of
anything to make this opportunity better. Overall, this internship has strengthened my confidence and

prepared me for future roles in cybersecurity. Thank you for the opportunity!


https://cheatsheetseries.owasp.org/index.html

Windows - WebGoat

v B WebGont x 4

« € © Notsecure hitps://localhostB080/WebGoat/startmvc?username=nikofmassei¥lesson/WebGoatintroduction lessan ® O @

Chrome is being controlled by automated test software.

Inroduction
WabGaat Resetlasson
General
(R2) Cryptopraphic Failures »
—— " What is WebGoat?
@ Out urity Misconfiguration  » ° tes @
® o n & Outdated Companents » 1ot
Hentity & Auth Failure » ot
T o Tofwero & Deta tegrty WebGoat is a deliberately insecure application that alows inferested developers jus! like you 1o fest vunerabilties commonly found in Java-based apphcations that use common and POpUIAr open SoUFCE Components —
Now, while we in no way condone causing infentional ham to any animal, goat or ofherwise, we think leaming everything you can about secury vulnerabiies is essential fo understanding just what happens when even a small bit of unintended
-, Security Logging Failures ] ¥ 9 ] 9! ppe o
Li coae gets inlo your applications il
evor-side Request Forgery » —
LN \What better way to do that than with your very awn scapegoat? L
Trnabenges Feel free 1o 6o what you willwith him. Hack. poke, prog and If f makes you feel better, scare him untl your hearts content. Go ahead, and hack the goat. We promise he likes It e
* Thanks for your interest -
)
The WebGoat Team e
+
History WebSockets e @[~

Logged in & running WebGoat successfully. Manual explore active via ZAP (with HUD enabled)

T History S Search  [Walerts #* | Output ¥ WebSockets ) ActiveScan o

® @ j ,3;&3 SQL Injection - Hypersonic SQL
- URL: hitp:Mlocalhost:8080/WebGoat/Sqlinjection/assignmentba
L Alerts (24) Risk: Im High

Fll Path Traversal (5)

o Confidence: Medium
[F0 s0L Injection (3)

Parameter: account

I SQL Injection - Hypersonic SQL (4)

[ vulnerable JS Lib — -
ulnerable _' rary Evidence: unexpected token:
|1 Absence of Anti-CSRF Tokens (16) CWE ID: 20
: -
4 Buffer Overflow (4) WASCID: 19

H.l Content Security Policy (CSP) Header Mot Set (17)

HJ Cross-Domain Misconfiguration

HJ Missing Anti-clickjacking Header (13)

"8 vulnerable JS Library (5)

|1 Cookie without SameSite Attribute (2)

|1 Server Leaks Version Information via "Server” HTTP Respons
Hl Strict-Transport-Security Header Mot Set (22)

|4 Timestamp Disclosure - Unix (6) Other Info:
|- X-Content-Type-Options Header Missing (76) RDBMS [Hypersonic SQL] likely, given error message regular expression MAUnexpected toke
FU Authentication Request Identified (2} The vulnerability was detected by manipulating the parameter to cause a database error mes

FU Infarmation Disclosure - Sensitive Information in URL
FU Information Disclosure - Suspicious Comments (20) Solution:

Source: Active (40018 - SQL Injection)
Input Vector: Form Cluery

Description:

S0QL injection may be possible.

Alerts were found after manual interaction with all WebGoat lessons and active scan in the ZAP
GUI. Used the HUD in WebGoat to spider and scan.



SQL Injection & XSS through WebGoat

v v

{A5) Security Misconfiguration >
(AB) Vuln & Outdated Companents >
{AT) Identity & Auth Failure >
(AB) Software & Data Integrity >
(A9) Security Logging Failures >
(A1) Server-side Request Forgery »
Client side >

Challenges »

Data Manipulation Language (DML)

As impied by the name, data Iguags with the of data. Many of the most common SQL stalements, including SELECT, INSERT, UPDATE, and DELETE. may be categorized as DML staiements. DML
statements may be used for requesting records (SELECT). adding records (INSERT), deleting reconds (DELETE), and modifying existing records (UPDATE).

If an attacker succeeds in ‘injecting” DML statements into 2 SQL datzbase, he can violate the confidentiaity (using SELECT statements), integrity (using UPDATE statements), and avakabilty (using DELETE or UPDATE siatements) of a
system

+ DML commands are used for stofing, retrieving, modifying, and deleting data.
+ SELECT - refrieve data from a datzbase
+ INSERT - insert data info a database
+ UPDATE - updates existing data within 2 database
+ DELETE - delete records from a daiabase
+ Example:
= Refrieve data:

 SELECT phone
FROM employees
WHERE userid = 96134

= This statement retrieves the phone number of the employee who has the userid 96134.

Itis your turn!

Try to change the department of Tobi Bamet to ‘Sales'. Note that you have been granted full adminisirator privileges in this assignment and can access all data without authentication.

v

e GRANT SELECT, INSERT, UPDATE ON grant_righis TO unauthorzed_user;

Submit
You have the

GRANT SELECT, INSERT, UPDATE ON grant_righis TO unauthorized_user;
USERID FIRST_NAME LAST NAME DEPARTMENT SALARY AUTH_TAN PHONE
83762  Tobi Bamett Sales 77000 TASLLT  nul

A later example of using SQL Injection to manipulate a database in WebGoat via host machine

localhost:3080 says
x5

XSS attack successful in a later lesson in WebGoat via host machine




Kali - bWAPP

File

Edit View

Analyse Report

Tools Import Export Oniine Help

127.0.01 g [SENCIE SRR <tandard Mode Bd 2 S 2AEEE ] 1 & @ ) X = me
N Kali Forums X Kali NetHunter « Exploit-DB = Google Hacking DB @ Sites  + ¥ Quick Start  =» Request = Response “Requester
@ 3¢ 3 Header: Text Body: Text 3
Choose your bug
@ X S Contexts GET http://127.6.0.1/sqli_l.php?title=securitySaction=search HTTP/1.1
e e DWAPP V2.2 ~wereremses v | Hack | % Default Context host: 127.0.6.1
£HUD Context User-Agent: Mozilla/5.8 (X11; Linux x86_64; rv:128.0) Gecko/201€8101
it o Hy levet s Firefox/128.8
Sk geclicny @ Sites Accept: text/nhtml,application/xhtmlexml,application/xnl;q=0.9,%/*;q=0.8
low v | set| Current: low ¥ http://127.0.0.1 Accept -Language: en-US,en;g=0.5
on exiremely buﬂg\/ web app— R e Connection: keep-ali
d Referer: https://127.0.0.1/sqli_l.php?title=nikobaction=search
i Images Cookie: PHPSESSID=f24j96infmdiid8tGodvbmadc2; sacurity level=d
apujs Upgrade-Insecure-Requests: 1
Change Password  Create User Set Security Level  Reset Credits o [ GET:login.php Soc-Fotch Dosts docimant

[ POST:login.php() (form,
{ GET:portal.php
{0 POST:portal.php() (bug,

/ SQL |l’\JeC+iOﬂ (@ET/SEO!"CI"\) 4 ‘ ) & P GET:sql_1.php

Search for Securit Search = 8 U stylesheets
Title elease Character Genre IMDb. Lo
;‘ "1 =History @ Search [ Alerts Output  # WebSockets & +

i

o | @ cremnet: - Al cnannels % 7 Fiter:OFF

)

= Channel s Timestamp Opcode Bytes Payload o
#2.23 - 12/07/2025, 12:42:02.95 response...
#2.24 - 12:42:02.112
#2.25 - 12:42:02 2", “response...
#2.26 - 12:42:12.13 64 {“component":"hud",...
#1.126 - 12/07/2025, 12:42:20.955 197 {“event.type":"ws.st..
#2.27 - 12/07/2025, 12:42:20.971 197 {“event.type":"ws.st
#2.28 - 12/07/2025, 12:42:20.987 196 {“event.type
#2.29 - 12/07/2025, 12:42:22.46 54 {“component":
#2.30 - 12/07/2025, 12:42:32.25 54 {“componen
#2.31 - 12/07/2025, 12:42:42.252 54 {“component
#2.32 - 12/07/2025, 12:42:52.255 54 {“component”:
#2.33 - 12/07/2025, 12:43:02.254 54°{“component
#2.34 - 12/07/2025, 12:43:12.254  1=TEXT 64 {"comiponent:

Alerts [0 J3 U5 4 Main Proxy: localhost:8081 CQurrent Status @0 $0 30 @0 0 #0 @0 #0

Normal input through bWAPP to log in ZAP for automated attacks and alerts — as seen in the

HTTP request

X Edit Alert

SQL Injection - MySQL ~
URL: http://127.0.0.1/sqli_1.php?title=%27 &action=search|
Risk: High ~
Confidence: | Medium —
Parameter: | title ~
Attack: '
Evidence: You hawe an error in your SQL syntasx
CWE ID: 29 =
WASC ID: 19 =

Description:

SQL injection may be possible.

| Other Info:

RDBMS [MySQL] likely, given error message regular expression [WQYou have an error in your SQL syntax\E]1 matched by the HTML results.

The wulnerability was detected by manipulating the parameter to cause a database error message to be returned and recognised

Solution

Do not trust client side input, ewven if there is client side wvalidation in place.

In general, type check all data on the server side.

If the application uses JDBC, use PreparedStatement or CallableStaternent, with parameters passed by '?'

Reference:

Ml bhttps://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
Alert Tags:
<=
Key value e

POLICY_QA_STD

POLICY QA FULL

OWASP_2017_A01 https://fowasp.org/www-project-top-ten/2017/A1_2017-njection.html

POLICY_DEV_CICD

POLICY_DEV_STD

Cancel Save

Possible SQL Injection details listed from active scan



10

SQL Injection

an ex+remely bu@ﬁy web app !

Bugs Change Password Create User Set Security Level Reset Credits Blog
@© out

'( / SQL |njec+ion (GET/Search) /

Bo

Title Release Character Genre IMDb

Error: You have an error in your SQL sy check the manual that corresponds to your MySQL

server version for the right syntax to use near '%" at line 1

History WebSockets

| followed the HTTP address for the possible injection, and this confirms that SQL Injection can be exploited

O

an ex+r‘emelx/ buggy web opp !

Bugs Change Password Create User Set Security Level Reset Credits Blog Logout
@ out
@ Off !
o/ SQL Inection (GET/search) / &
o
= Search for a movie |'OR1=1 331 I Search
o
/o Title Release Character Genre IMDb ﬂ
o
> G.1. Joe: Retaliation 2013 Cobra Commander action Link =4
Iron Man 2008 Tony Stark action Link
Man of Steel 2013 Clark Kent action Link
Terminator Salvation 2009 John Connor sci-fi Link
The Amazing Spider-Man 2012 Peter Parker action Link
The Cabin in the Woods 2011 Some zombies horror Link
The Dark Knight Rises 2012 Bruce Wayne action Link
The Fast and the Furious 2001 Brian O'Connor action Link

History WebSockets

After attempting multiple common SQL injections, ”' OR 1=1 #” worked!



11

XSS

s R
[LJRL: http://127.0.0.1/sqli_1.php?title =%2 7 %22 %3 Cscript%%3Ealert %281 %2 9%3B%3 C%2 FscRipt%BE&action:search]
Risk: High o
Confidence:  Medium ~
Parameter: | title ~
Attack: "<=script=alert(1l); </scRipt>
Evidence: "=script=alert(1l); </scRipt=>=
CWE ID: 79 o
WASC ID: =] €3

Description:

Cross-site Scripting (X55) is an attack technigue that involves echoing attacker-supplied code into a user's browser
instance. A browser instance can be a standard web browser client, or a browser object embedded in a software
product such as the browser within Win&Amp, an RSS reader, or an email client. The code itself is usually written in

Other Info:

Solution:

Phase: Architecture and Design
Use a wvetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to awvoid.

Reference:

https:/fowasp.org/www-community/attacks/xss/
https://cwe.mitre.org/data/definitions/739.html

Alert Tags:
+ - 7
Key Value =]
POLICY_QA_FULL
WSTG-w42-NPV-01 https:/fowasp.org/www-project-web-security-testing-guide. ..
Cancel Save

XSS (Reflected) details form auto scan. Following HTTP and confirming vulnerability.

Vulnerability is confirmed. Changed payload from displaying — as seen in the ZAP details — “1” to “You
got hacked!”



