
1

Task 2: Introduction to Web Application Security

 Nicholas Massei

Cybersecurity Intern

Redynox

July 12, 2025

2

Introduction

During my second task, I focused on identifying and exploiting web application vulnerabilities – as

mentioned in the objectives, focusing on SQL Injection and Cross-Site Scripting (XSS) using tools

like bWAPP, WebGoat, and ZAP. My goal was to understand these vulnerabilities in practice and

learn mitigation techniques.

Setup WebGoat Environment

To begin, I installed Docker to run WebGoat on my host machine – and later just installed WebGoat

on my Kali Linux VM. WebGoat is an intentionally vulnerable web application including its own

lessons for practicing techniques, and I accessed it via browser at http://localhost:8080/WebGoat.

The platform offers guided modules that simulate real attack scenarios, which made it super easy to

engage with and test techniques like SQL Injection, Cross-Site Scripting (XSS), and Cross-Site

Request Forgery (CSRF) – all are techniques I have become familiar with beforehand.

Logging in and exploring these modules on WebGoat provided a controlled space to break things,

learn from mistakes, and better understand how attackers think. So far, I am just thinking about how

incredible this tool is for learning and sandboxing.

Gaining Background Information

I then used an incredibly helpful YouTube tutorial titled “Automated Hacking Tool?! | OWASP ZAP

Tutorial” to deepen my understanding of ZAP and how to properly interpret the results it was giving

me. This resource helped me move beyond just passively running scans -- it taught me how to read

alerts, understand their risk levels, and even explore follow-up manual testing based on what was

discovered. With this video, I was able to take more intentional steps in using ZAP as an actual

penetration testing tool, not just an automated scanner.

3

The tutorial specifically connected to vulnerabilities like Cross-Site Scripting (XSS), SQL Injection,

and Cross-Site Request Forgery (CSRF) by demonstrating how ZAP detects these issues and what

manual techniques can be used to exploit and confirm them. This made it much easier to grasp the

practical implications of the vulnerabilities I encountered in WebGoat and understand how attackers

might leverage them. It also showed me that ZAP definitely pulls false negatives (which should be

expected) so it is good to verify every vulnerability ZAP finds.

Reference: https://youtu.be/QJ5u_dHwoAk?si=1si6gh2HH_V62lAZ

Basic Vulnerability Analysis

Now to start getting interactive. I have everything set up and am ready to manually explore

WebGoat’s lessons and the site itself, actively investigating and exploiting vulnerabilities while using

ZAP as my primary tool for identifying security weaknesses. While going through the lessons for

SQL injection, XSS, and CSRF on WebGoat I had ZAP manually configured to log, spider, and

further vulnerability scan using, and it obviously logged more than one example of each of these

vulnerabilities – there were many more to explore but I will focus on these for this task. The alerts

listed gave me solid proof of each vulnerability.

• SQL Injection and SQL Injection - Hypersonic SQL – SQL Injection

• Vulnerable JS Library – XSS

• Absence of Anti-CSRF Tokens – CSRF

Evidence screenshotted and included on the last page(s).

https://youtu.be/QJ5u_dHwoAk?si=1si6gh2HH_V62lAZ

4

Exploring Vulnerabilities

After reviewing ZAP’s alert descriptions and with the lessons I went through on WebGoat, I

deepened my understanding of how each vulnerability functions – not just in theory, but even in the

context of a real (insecure) application.

• For SQL Injection (Windows – WebGoat), I used inputs in the lessons such as the first one where

I used “SELECT department FROM employees WHERE first_name = 'Bob'” to retrieve data without

authentication. ZAP’s alert for "SQL Injection – Hypersonic SQL" confirmed the potential impact of

insecure query handling and helped reinforce how backend logic can be manipulated with crafted

input.

• For XSS (Windows – WebGoat), I explored where simple JavaScript payloads like

<script>alert('XSS')</script> could be submitted — particularly in comment or input fields. While

WebGoat provides safe examples, ZAP identified the usage of an outdated version of Underscore.js,

linked to a known CVE (CVE-2021-23358, as listed in the description), which supports the potential

for script injection attacks.

• For CSRF (Windows – WebGoat), ZAP detected the absence of anti-CSRF tokens in many

requests. Without these tokens, an attacker could forge state-changing requests from a victim’s

browser. This aligns closely with what I learned when going through WebGoat’s CSRF lessons.

Each of these findings was confirmed through both ZAP’s logging, automated scanning, and manual

interaction with the WebGoat interface.

Using Kali Linux VM with ZAP in bWAPP to explore SQL Injection and XSS further

Attempting to manually exploit a site (with consent - bWAPP) using techniques I have learned.

bWAPP (buggy web application) is an intentionally vulnerable app -- like WebGoat, but different.

5

o SQL Injection: For SQL Injection (Search/GET – bWAPP on Kali), I used payloads like '

OR 1=1 # to bypass search filters and retrieve the entire dataset from the backend without

proper validation. The success of this injection demonstrated how vulnerable queries can be

exploited to expose all records. This further reinforced the importance of sanitizing input and

using parameterized queries to defend against unauthorized data access.

o Cross-Site Scripting XSS: For XSS testing on bWAPP, I used payload '><script>alert('You

got hacked!')</script> and injected it. This successfully triggered an alert, demonstrating that

the application failed to properly sanitize user input before rendering it on the page. This

vulnerability highlights the risk of attackers injecting malicious scripts that can steal user data

or perform unauthorized actions. It further emphasizes the need for input validation to

prevent such attacks.

Evidence screenshotted and included on the last page(s) as always.

Challenges Faced

Most tasks were clear and manageable, though I faced some formatting issues with documentation

and had to familiarize myself with new security tools and set ups. I addressed these by researching

best practices and searching for help when needed.

Report

SQL Injection: Bypassed input validation to access unauthorized data.

Cross-Site Scripting (XSS): Executed malicious scripts via un-sanitized user input.

Cross-Site Request Forgery (CSRF): Missing anti-CSRF tokens would allow unauthorized actions.

6

Possible Simple Mitigations

Input Sanitization & Parameterized Queries: Prevent SQL injection by using prepared statements

and validating user inputs rigorously.

Output Encoding & Content Security Policy (CSP): Mitigate XSS by encoding output, sanitizing

input, and implementing CSP headers to restrict script execution.

Implement Anti-CSRF Tokens: Include unique tokens in state-changing requests to verify

legitimate user actions and block forged requests.

Reference:

 OWASP Foundation. OWASP Cheat Sheet Series. https://cheatsheetseries.owasp.org/index.html

Conclusion

This internship has been a great learning experience that took my cybersecurity skills from theory to

hands-on application. Working through real vulnerabilities like SQL injection, cross-site scripting, and

CSRF while using tools such as WebGoat, ZAP, and Wireshark allowed me to better understand both

offensive and defensive techniques. From network traffic monitoring to vulnerability scanning and safe

configuration practices, every task showed the importance of layered security and its implementation.

Closing Remarks

I’m grateful to the Redynox team for creating supportive, challenge-driven tasks. The structure and

resources provided helped me grow technically and professionally. For what it is, I couldn’t think of

anything to make this opportunity better. Overall, this internship has strengthened my confidence and

prepared me for future roles in cybersecurity. Thank you for the opportunity!

https://cheatsheetseries.owasp.org/index.html

7

Windows - WebGoat

Logged in & running WebGoat successfully. Manual explore active via ZAP (with HUD enabled)

Alerts were found after manual interaction with all WebGoat lessons and active scan in the ZAP
GUI. Used the HUD in WebGoat to spider and scan.

8

SQL Injection & XSS through WebGoat

A later example of using SQL Injection to manipulate a database in WebGoat via host machine

XSS attack successful in a later lesson in WebGoat via host machine

9

Kali – bWAPP

Normal input through bWAPP to log in ZAP for automated attacks and alerts – as seen in the

HTTP request

Possible SQL Injection details listed from active scan

10

SQL Injection

I followed the HTTP address for the possible injection, and this confirms that SQL Injection can be exploited

After attempting multiple common SQL injections, ”' OR 1=1 #” worked!

11

XSS

XSS (Reflected) details form auto scan. Following HTTP and confirming vulnerability.

Vulnerability is confirmed. Changed payload from displaying – as seen in the ZAP details – “1” to “You
got hacked!”

